Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1308161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433822

RESUMO

Background: Osteoadsorptive fluorogenic sentinel 3 (OFS-3) is a recently described compound that contains a bone-targeting bisphosphonate (BP) and cathepsin K (Ctsk)-triggered fluorescence signal. A prior study in a murine Achilles repair model demonstrated its effectiveness at targeting the site of tendon-to-bone repair, but the intrinsic effect of this novel bisphosphonate chaperone on tendon-to-bone healing has not been previously explored. We hypothesized that application of this bisphosphonate-fluorophore cargo conjugate would not affect the biomechanical properties or histologic appearance of tendon-bone repairs. Materials and Methods: Right hindlimb Achilles tendon-to-bone repair was performed on 12-week old male mice. Animals were divided into 2 groups of 18 each: 1) Achilles repair with OFS-3 applied directly to the repair site prior to closure, and 2) Achilles repair with saline applied prior to closure. Repaired hindlimbs from 12 animals per group were harvested at 6 weeks for biomechanical analysis with a custom 3D-printed jig. At 4 and 6 weeks, repaired hindlimbs from the remaining animals were assessed histologically using H&E, immunohistochemistry (IHC) staining for the presence of Ctsk, and second harmonic generation (SHG) imaging to evaluate collagen fibers. Results: At 6 weeks, there was no significant difference in failure load, stiffness, toughness, or displacement to failure between repaired hindlimbs that received OFS-3 versus saline. There was no difference in tissue healing on H&E or Ctsk staining on immunohistochemistry between animals that received OFS-3 versus saline. Finally, second harmonic generation imaging demonstrated no difference in collagen fiber parameters between the two groups. Conclusion: OFS-3 did not significantly affect the biomechanical properties or histologic appearance of murine Achilles tendon-to-bone repairs. This study demonstrates that OFS-3 can target the site of tendon-to-bone repair without causing intrinsic negative effects on healing. Further development of this drug delivery platform to target growth factors to the site of tendon-bone repair is warranted.

2.
J Am Chem Soc ; 146(5): 3220-3229, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271668

RESUMO

Complex bacterial glycoconjugates drive interactions between pathogens, symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphosphosugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). The two distinct superfamilies of PGT enzymes (polytopic and monotopic) show striking differences in their structure and mechanism. We designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate of the UDP and UDP-sugar is replaced by a substituted methylene bisphosphonate (CXY-BPs; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). UBPs and UBPs incorporating an N-acetylglucosamine (GlcNAc) substituent at the ß-phosphonate were evaluated as inhibitors of a polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics diphosphate with respect to its acid/base properties, the less basic CF2-BP conjugate more strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies, implicating a modified P-O- interaction with the structural Mg2+. For the monoPGT enzyme, the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pß carbon, also exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are thus revealed as informative new mechanistic probes of PGTs that may aid development of novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.


Assuntos
Difosfatos , Transferases , Humanos , Transferases/química , Uridina , Glicoconjugados/química , Difosfonatos , Açúcares , Difosfato de Uridina
3.
Antiviral Res ; 222: 105799, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190973

RESUMO

Adenovirus infections of immunocompromised humans are a significant source of morbidity and mortality. Presently, there is no drug specifically approved for the treatment of adenovirus infections by the FDA. The state-of-the-art treatment of such infections is the off-label use of cidofovir, an acyclic nucleotide phosphonate. While cidofovir inhibits adenovirus replication, it has dose-limiting kidney toxicity. There is an apparent need for a better compound to treat adenovirus infections. To this end, we have been developing acyclic nucleotide phosphonate prodrugs that utilize an amino acid scaffold equipped with a lipophilic modifier. Here, we compare the antiviral potential of two prodrugs of HPMPA that differ only in the amino acid-based promoiety: USC-087, based on an N-hexadecyl tyrosinamide, and USC-093, based on an N-hexadecyl serinamide. Oral administration of both compounds was very efficacious against disseminated HAdV-C6 infection in immunosuppressed Syrian hamsters, suppressing virus replication and mitigating pathology even when treatment was withheld until 4 days after challenge. We saw only marginal efficacy after respiratory infection of hamsters, which may reflect suboptimal distribution to the lung. Importantly, neither compound induced intestinal toxicity, which was observed as the major adverse effect in clinical trials of brincidofovir, a prodrug of cidofovir which also contains a C-16 modifier. Notably, we found that there was a significant difference in the nephrotoxicity of the two compounds: USC-087 caused significant kidney toxicity while USC-093 did not, at effective doses. These findings will be valuable guidepoints in the future evolution of this new class of potential prodrugs to treat adenovirus infections.


Assuntos
Adenina/análogos & derivados , Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Organofosfonatos , Pró-Fármacos , Tirosina/análogos & derivados , Cricetinae , Animais , Humanos , Infecções por Adenovirus Humanos/tratamento farmacológico , Cidofovir/farmacologia , Cidofovir/uso terapêutico , Mesocricetus , Antivirais/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Adenoviridae , Replicação Viral , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico , Infecções por Adenoviridae/tratamento farmacológico , Citosina/farmacologia , Citosina/uso terapêutico , Aminoácidos/farmacologia , Nucleotídeos/uso terapêutico
4.
Bone Res ; 11(1): 51, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848449

RESUMO

Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (hydroxybisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Vancomicina/uso terapêutico , Meticilina/uso terapêutico , Antibacterianos/farmacologia , Resistência a Meticilina , Infecções Estafilocócicas/tratamento farmacológico , Osseointegração , Modelos Animais de Doenças , Osteomielite/tratamento farmacológico
5.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786673

RESUMO

Complex bacterial glycoconjugates are essential for bacterial survival, and drive interactions between pathogens and symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphospho-sugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). Two distinct superfamilies of PGT enzymes, denoted as polytopic and monotopic, carry out this reaction but show striking differences in structure and mechanism. With the goal of creating non-hydrolyzable mimics (UBP-sugars) of the UDP-sugar substrates as chemical probes to interrogate critical aspects of these essential enzymes, we designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate bridging oxygen of the UDP and UDP-sugar is replaced by a substituted methylene group (CXY; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). These compounds, which incorporated as the conjugating sugar an N-acetylglucosamine (GlcNAc) substituent at the ß-phosphonate, were evaluated as inhibitors of a representative polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics pyrophosphate with respect to its acid/base properties, the less basic CF2-BP conjugate most strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies implicating a modified P-O- interaction with the structural Mg2+, consistent with their catalytic divergence. Furthermore, at least for the monoPGT superfamily example, this was not the sole determinant of ligand binding: the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pß carbon, exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are a valuable tool for elucidating the structures and mechanisms of the distinct PGT superfamilies and offer a promising scaffold to develop novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.

6.
Bioorg Med Chem ; 92: 117425, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37544256

RESUMO

Monoamine oxidases (MAOA/MAOB) are enzymes known for their role in neurotransmitter regulation in the central nervous system (CNS). Irreversible and non-selective MAO inhibitors (MAOi's) were the first class of antidepressants, thus subsequent work on drugs such as the selective MAOA inhibitor clorgyline has focussed on selectivity and increased CNS penetration. MAOA is highly expressed in high grade and metastatic prostate cancer with a proposed effect on prostate cancer growth, recurrence, and drug resistance. A Phase II Clinical Trial has demonstrated the therapeutic effects of the irreversible nonselective MAOi phenelzine for prostate cancer. However, neurologic adverse effects led to early withdrawal in 25% of the enrolled patient-population. In this work, we revised the clorgyline scaffold with the goal of decreasing CNS penetration to minimize CNS-related side effects while retaining or enhancing MAOA inhibition potency and selectivity. Using the known co-crystal structure of clorgyline bound with FAD co-factor in the hMAOA active site as a reference, we designed and synthesized a series of compounds predicted to have lower CNS penetration (logBB). All synthesized derivatives displayed favorable drug-like characteristics such as predicted Caco-2 permeability and human oral absorption, and exhibited highly selective hMAOA binding interactions. Introduction of an HBD group (NH2 or OH) at position 5 of the phenyl ring clorgyline resulted in 3x more potent hMAOA inhibition with equivalent or better hMAOB selectivity, and similar prostate cancer cell cytotoxicity. In contrast, introduction of larger substituents at this position or at the terminal amine significantly reduced the hMAOA inhibition potency, attributed in part to a steric clash within the binding pocket of the MAOA active site. Replacement of the N-methyl group by a more polar, but larger 2-hydroxyethyl group did not enhance potency. However, introduction of a polar 2-hydroxy in the propyl chain retained the highly selective MAOA inhibition and cancer cell cytotoxicity of clorgyline while reducing its CNS score from 2 to 0. We believe that these results identify a new class of peripherally directed MAOIs that may allow safer therapeutic targeting of MAOA for a variety of anti-cancer and anti-inflammatory indications.


Assuntos
Inibidores da Monoaminoxidase , Neoplasias da Próstata , Masculino , Humanos , Clorgilina/farmacologia , Células CACO-2 , Inibidores da Monoaminoxidase/farmacologia , Antidepressivos , Monoaminoxidase/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Encéfalo/metabolismo
7.
J Orthop Res ; 41(10): 2250-2260, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37087676

RESUMO

Tendon injuries are common and often treated surgically, however, current tendon repair healing results in poorly organized fibrotic tissue. While certain growth factors have been reported to improve both the strength and organization of the repaired enthesis, their clinical applicability is severely limited due to a lack of appropriate delivery strategies. In this study, we evaluated a recently developed fluorescent probe, Osteoadsorptive Fluorogenic Sentinel-3 that is composed of a bone-targeting bisphosphonate (BP) moiety linked to fluorochrome and quencher molecules joined via a cathepsin K-sensitive peptide sequence. Using a murine Achilles tendon-to-bone repair model, BP-based and/or Ctsk-coupled imaging probes were applied either locally or systemically. Fluorescence imaging was used to quantify the resultant signal in vivo. After tendon-bone repair, animals that received either local or systemic administration of imaging probes demonstrated significantly higher fluorescence signal at the repair site compared to the sham surgery group at all time points (p < 0.001), with signal peaking at 7-10 days after surgery. Our findings demonstrate the feasibility of using a novel BP-based targeting and Ctsk-activated delivery of molecules to the site of tendon-to-bone repair and creates a foundation for further development of this platform as an effective strategy to deliver bioactive molecules to sites of musculoskeletal injury.


Assuntos
Procedimentos de Cirurgia Plástica , Traumatismos dos Tendões , Ratos , Animais , Camundongos , Cicatrização , Ratos Sprague-Dawley , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/cirurgia , Tendões/cirurgia
8.
Molecules ; 28(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110732

RESUMO

Phosphonic acids represent one of the most important categories of organophosphorus compounds, with myriad examples found in chemical biology, medicine, materials, and other domains. Phosphonic acids are rapidly and conveniently prepared from their simple dialkyl esters by silyldealkylation with bromotrimethylsilane (BTMS), followed by desilylation upon contact with water or methanol. Introduced originally by McKenna, the BTMS route to phosphonic acids has long been a favored method due to its convenience, high yields, very mild conditions, and chemoselectivity. We systematically investigated microwave irradiation as a means to accelerate the BTMS silyldealkylations (MW-BTMS) of a series of dialkyl methylphosphonates with respect to solvent polarity (ACN, dioxane, neat BTMS, DMF, and sulfolane), alkyl group (Me, Et, and iPr), electron-withdrawing P-substitution, and phosphonate-carboxylate triester chemoselectivity. Control reactions were performed using conventional heating. We also applied MW-BTMS to the preparation of three acyclic nucleoside phosphonates (ANPs, an important class of antiviral and anticancer drugs), which were reported to undergo partial nucleoside degradation under MW hydrolysis with HCl at 130-140 °C (MW-HCl, a proposed alternative to BTMS). In all cases, MW-BTMS dramatically accelerated quantitative silyldealkylation compared to BTMS with conventional heating and was highly chemoselective, confirming it to be an important enhancement of the conventional BTMS method with significant advantages over the MW-HCl method.

9.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768310

RESUMO

Osteomyelitis is a limb- and life-threatening orthopedic infection predominantly caused by Staphylococcus aureus biofilms. Bone infections are extremely challenging to treat clinically. Therefore, we have been designing, synthesizing, and testing novel antibiotic conjugates to target bone infections. This class of conjugates comprises bone-binding bisphosphonates as biochemical vectors for the delivery of antibiotic agents to bone minerals (hydroxyapatite). In the present study, we utilized a real-time impedance-based assay to study the growth of Staphylococcus aureus biofilms over time and to test the antimicrobial efficacy of our novel conjugates on the inhibition of biofilm growth in the presence and absence of hydroxyapatite. We tested early and newer generation quinolone antibiotics (ciprofloxacin, moxifloxacin, sitafloxacin, and nemonoxacin) and several bisphosphonate-conjugated versions of these antibiotics (bisphosphonate-carbamate-sitafloxacin (BCS), bisphosphonate-carbamate-nemonoxacin (BCN), etidronate-carbamate-ciprofloxacin (ECC), and etidronate-carbamate-moxifloxacin (ECX)) and found that they were able to inhibit Staphylococcus aureus biofilms in a dose-dependent manner. Among the conjugates, the greatest antimicrobial efficacy was observed for BCN with an MIC of 1.48 µg/mL. The conjugates demonstrated varying antimicrobial activity depending on the specific antibiotic used for conjugation, the type of bisphosphonate moiety, the chemical conjugation scheme, and the presence or absence of hydroxyapatite. The conjugates designed and tested in this study retained the bone-binding properties of the parent bisphosphonate moiety as confirmed using high-performance liquid chromatography. They also retained the antimicrobial activity of the parent antibiotic in the presence or absence of hydroxyapatite, albeit at lower levels due to the nature of their chemical modification. These findings will aid in the optimization and testing of this novel class of drugs for future applications to pharmacotherapy in osteomyelitis.


Assuntos
Osteomielite , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Difosfonatos/uso terapêutico , Moxifloxacina , Ácido Etidrônico/uso terapêutico , Impedância Elétrica , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Osteomielite/tratamento farmacológico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Biofilmes , Durapatita/química , Testes de Sensibilidade Microbiana
10.
J Comput Chem ; 43(32): 2121-2130, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36190786

RESUMO

Novel agents to treat invasive fungal infections are urgently needed because the small number of established targets in pathogenic fungi makes the existing drug repertoire particularly vulnerable to the emergence of resistant strains. Recently, we reported that Candida albicans Bdf1, a bromodomain and extra-terminal domain (BET) bromodomain with paired acetyl-lysine (AcK) binding sites (BD1 and BD2) is essential for fungal cell growth and that an imidazopyridine (1) binds to BD2 with selectivity versus both BD1 and human BET bromodomains. Bromodomain binding pockets contain a conserved array of structural waters. Molecular dynamics simulations now reveal that one water molecule is less tightly bound to BD2 than to BD1, explaining the site selectivity of 1. This insight is useful in the performance of ligand docking studies to guide design of more effective Bdf1 inhibitors, as illustrated by the design of 10 new imidazopyridine BD2 ligands 1a-j, for which experimental binding and site selectivity data are presented.


Assuntos
Candida albicans , Fatores de Transcrição , Humanos , Candida albicans/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Sítios de Ligação
11.
Commun Med (Lond) ; 2: 112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082175

RESUMO

Background: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but serious side effect of nitrogen-containing bisphosphonate drugs (N-BPs) frequently prescribed to reduce skeletal-related events in bone malignancies and osteoporosis. BRONJ is associated with abnormal oral wound healing after dentoalveolar surgery and tooth extraction. We previously found that N-BP chemisorbed to bone mineral hydroxyapatite was dissociated by secondary applied N-BP. This study investigated the effect of the surface equilibrium-based removal of N-BP from jawbone on tooth extraction wound healing of zoledronate (ZOL)-treated mice. Methods: A pharmacologically inactive N-BP derivative (the 4-pyridyl isomer of risedronate equipped with a near-infrared 800CW fluorescent imaging dye, 800CW-pRIS) was designed and synthesized. 800CW-pRIS was intra-orally injected or topically applied in a deformable nano-scale vesicle formulation (DNV) to the palatal tissue of mice pretreated with ZOL, a potent N-BP. The female C56BL6/J mice were subjected to maxillary molar extraction and oral wound healing was compared for 800CW-pRIS/ZOL, ZOL and untreated control groups. Results: 800CW-pRIS is confirmed to be inactive in inhibiting prenylation in cultured osteoclasts while retaining high affinity for hydroxyapatite. ZOL-injected mice exhibit delayed tooth extraction wound healing with osteonecrosis relative to the untreated controls. 800CW-pRIS applied topically to the jaw one week before tooth extraction significantly reduces gingival oral barrier inflammation, improves extraction socket bone regeneration, and prevents development of osteonecrosis in ZOL-injected mice. Conclusions: Topical pre-treatment with 800CW-RIS in DNV is a promising approach to prevent the complication of abnormal oral wound healing associated with BRONJ while retaining the anti-resorptive benefit of legacy N-BP in appendicular or vertebrate bones.

12.
Commun Biol ; 5(1): 962, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104423

RESUMO

Periodontitis is a highly prevalent disease leading to uncontrolled osteoclastic jawbone resorption and ultimately edentulism; however, the disease onset mechanism has not been fully elucidated. Here we propose a mechanism for initial pathology based on results obtained using a recently developed Osteoadsorptive Fluogenic Sentinel (OFS) probe that emits a fluorescent signal triggered by cathepsin K (Ctsk) activity. In a ligature-induced mouse model of periodontitis, a strong OFS signal is observed before the establishment of chronic inflammation and bone resorption. Single cell RNA sequencing shows gingival fibroblasts to be the primary cellular source of early Ctsk. The in vivo OFS signal is activated when Toll-Like Receptor 9 (TLR9) ligand or oral biofilm extracellular DNA (eDNA) is topically applied to the mouse palatal gingiva. This previously unrecognized interaction between oral microbial eDNA and Ctsk of gingival fibroblasts provides a pathological mechanism for disease initiation and a strategic basis for early diagnosis and treatment of periodontitis.


Assuntos
Reabsorção Óssea , Periodontite , Animais , Reabsorção Óssea/metabolismo , Catepsina K/genética , Catepsina K/metabolismo , Catepsina K/farmacologia , DNA/metabolismo , Fibroblastos/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Camundongos , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia
13.
Elife ; 112022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36017995

RESUMO

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) presents as a morbid jawbone lesion in patients exposed to a nitrogen-containing bisphosphonate (N-BP). Although it is rare, BRONJ has caused apprehension among patients and healthcare providers and decreased acceptance of this antiresorptive drug class to treat osteoporosis and metastatic osteolysis. We report here a novel method to elucidate the pathological mechanism of BRONJ by the selective removal of legacy N-BP from the jawbone using an intra-oral application of hydroxymethylene diphosphonate (HMDP) formulated in liposome-based deformable nanoscale vesicles (DNV). After maxillary tooth extraction, zoledronate-treated mice developed delayed gingival wound closure, delayed tooth extraction socket healing and increased jawbone osteonecrosis consistent with human BRONJ lesions. Single cell RNA sequencing of mouse gingival cells revealed oral barrier immune dysregulation and unresolved proinflammatory reaction. HMDP-DNV topical applications to nascent mouse BRONJ lesions resulted in accelerated gingival wound closure and bone socket healing as well as attenuation of osteonecrosis development. The gingival single cell RNA sequencing demonstrated resolution of chronic inflammation by increased anti-inflammatory signature gene expression of lymphocytes and myeloid-derived suppressor cells. This study suggests that BRONJ pathology is related to N-BP levels in jawbones and demonstrates the potential of HMDP-DNV as an effective BRONJ therapy.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/terapia , Difosfonatos/efeitos adversos , Humanos , Lipossomos , Camundongos , Nitrogênio , Ácido Zoledrônico
14.
Bone ; 156: 116289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34896359

RESUMO

The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.


Assuntos
Neoplasias Ósseas , Difosfonatos , Neoplasias Ósseas/tratamento farmacológico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Humanos , Ácido Mevalônico/metabolismo , Nitrogênio , Relação Estrutura-Atividade
15.
Front Cell Neurosci ; 15: 666706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335184

RESUMO

Sensorineural hearing loss is irreversible and is associated with the loss of spiral ganglion neurons (SGNs) and sensory hair cells within the inner ear. Improving spiral ganglion neuron (SGN) survival, neurite outgrowth, and synaptogenesis could lead to significant gains for hearing-impaired patients. There has therefore been intense interest in the use of neurotrophic factors in the inner ear to promote both survival of SGNs and re-wiring of sensory hair cells by surviving SGNs. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) represent the primary neurotrophins in the inner ear during development and throughout adulthood, and have demonstrated potential for SGN survival and neurite outgrowth. We have pioneered a hybrid molecule approach to maximize SGN stimulation in vivo, in which small molecule analogues of neurotrophins are linked to bisphosphonates, which in turn bind to cochlear bone. We have previously shown that a small molecule BDNF analogue coupled to risedronate binds to bone matrix and promotes SGN neurite outgrowth and synaptogenesis in vitro. Because NT-3 has been shown in a variety of contexts to have a greater regenerative capacity in the cochlea than BDNF, we sought to develop a similar approach for NT-3. 1Aa is a small molecule analogue of NT-3 that has been shown to activate cells through TrkC, the NT-3 receptor, although its activity on SGNs has not previously been described. Herein we describe the design and synthesis of 1Aa and a covalent conjugate of 1Aa with risedronate, Ris-1Aa. We demonstrate that both 1Aa and Ris-1Aa stimulate neurite outgrowth in SGN cultures at a significantly higher level compared to controls. Ris-1Aa maintained its neurotrophic activity when bound to hydroxyapatite, the primary mineral component of bone. Both 1Aa and Ris-1Aa promote significant synaptic regeneration in cochlear explant cultures, and both 1Aa and Ris-1Aa appear to act at least partly through TrkC. Our results provide the first evidence that a small molecule analogue of NT-3 can stimulate SGNs and promote regeneration of synapses between SGNs and inner hair cells. Our findings support the promise of hydroxyapatite-targeting bisphosphonate conjugation as a novel strategy to deliver neurotrophic agents to SGNs encased within cochlear bone.

16.
Antibiotics (Basel) ; 10(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204351

RESUMO

The use of local antibiotics to treat bone infections has been questioned due to a lack of clinical efficacy and emerging information about Staphylococcus aureus colonization of the osteocyte-lacuno canalicular network (OLCN). Here we propose bisphosphonate-conjugated antibiotics (BCA) using a "target and release" approach to deliver antibiotics to bone infection sites. A fluorescent bisphosphonate probe was used to demonstrate bone surface labeling adjacent to bacteria in a S. aureus infected mouse tibiae model. Bisphosphonate and hydroxybisphosphonate conjugates of sitafloxacin and tedizolid (BCA) were synthesized using hydroxyphenyl and aminophenyl carbamate linkers, respectively. The conjugates were adequately stable in serum. Their cytolytic activity versus parent drug on MSSA and MRSA static biofilms grown on hydroxyapatite discs was established by scanning electron microscopy. Sitafloxacin O-phenyl carbamate BCA was effective in eradicating static biofilm: no colony formation units (CFU) were recovered following treatment with 800 mg/L of either the bisphosphonate or α-hydroxybisphosphonate conjugated drug (p < 0.001). In contrast, the less labile tedizolid N-phenyl carbamate linked BCA had limited efficacy against MSSA, and MRSA. CFU were recovered from all tedizolid BCA treatments. These results demonstrate the feasibility of BCA eradication of S. aureus biofilm on OLCN bone surfaces and support in vivo drug development of a sitafloxacin BCA.

17.
ACS Chem Biol ; 16(10): 1924-1929, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34282887

RESUMO

Metabolic chemical reports have fundamentally changed the way researchers study glycosylation. However, when administered as per-O-acetylated sugars, reporter molecules can participate in nonspecific chemical labeling of cysteine residues termed S-glycosylation. Without detailed proteomic analyses, these labeling events can be indistinguishable from bona fide enzymatic labeling convoluting experimental results. Here, we report a solution in the synthesis and characterization of two reporter molecules functionalized at the anomeric position with hexanoic acid: 1-Hex-GlcNAlk and 1-Hex-6AzGlcNAc. Both reporters exhibit robust labeling over background with negligible amounts of nonspecific chemical labeling in cell lysates. This strategy serves as a template for the design of future reporter molecules allowing for more reliable interpretation of results.


Assuntos
Caproatos/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glicoproteínas/metabolismo , Sondas Moleculares/metabolismo , Alcinos/química , Azidas/química , Caproatos/química , Glicoproteínas/química , Glicosilação , Células HeLa , Humanos , Sondas Moleculares/química , Estudo de Prova de Conceito , Processamento de Proteína Pós-Traducional
18.
Bioconjug Chem ; 32(5): 916-927, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33956423

RESUMO

We describe the design and synthesis of OFS-1, an Osteoadsorptive Fluorogenic Sentinel imaging probe that is adsorbed by hydroxyapatite (HAp) and bone mineral surfaces, where it generates an external fluorescent signal in response to osteoclast-secreted cathepsin K (Ctsk). The probe consists of a bone-anchoring bisphosphonate moiety connected to a Förster resonance energy transfer (FRET) internally quenched fluorescent (IQF) dye pair, linked by a Ctsk peptide substrate, GHPGGPQG. Key structural features contributing to the effectiveness of OFS-1 were defined by structure-activity relationship (SAR) and modeling studies comparing OFS-1 with two cognates, OFS-2 and OFS-3. In solution or when preadsorbed on HAp, OFS-1 exhibited strong fluorescence when exposed to Ctsk (2.5-20 nM). Time-lapse photomicrographs obtained after seeding human osteoclasts onto HAp-coated well plates containing preadsorbed OFS-1 revealed bright fluorescence at the periphery of resorbing cells. OFS-1 administered systemically detected early osteolysis colocalized with orthotopic engraftment of RPMI-8226-Luc human multiple myeloma cells at a metastatic skeletal site in a humanized mouse model. OFS-1 is thus a promising new imaging tool for detecting abnormal bone resorption.


Assuntos
Reabsorção Óssea/diagnóstico , Catepsina K/metabolismo , Desenho de Fármacos , Mieloma Múltiplo/patologia , Osteoblastos/patologia , Osteoclastos/patologia , Adsorção , Animais , Reabsorção Óssea/complicações , Técnicas de Química Sintética , Humanos , Camundongos , Mieloma Múltiplo/complicações
19.
Tetrahedron Lett ; 672021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33716328

RESUMO

Three novel 8-oxo-dGTP bisphosphonate analogues of 3 in which the bridging ß,γ-oxygen is replaced by a methylene, fluoromethylene or difluoromethylene group (4-6, respectively) have been synthesized from 8-oxo-dGMP 2 by reaction of its morpholine 5'-phosphoramidate 14 or preferably, its N-methylimidazole 5'-phosphoramidate 15 with n-tributylammonium salts of the appropriate bisphosphonic acids, 11-13. The latter method also provides a convenient new route to 3. Analogues 4-6 may be useful as mechanistic probes for the role of 3 in abnormal DNA replication and repair.

20.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33741738

RESUMO

Small molecules that target the androgen receptor (AR) are the mainstay of therapy for lethal castration-resistant prostate cancer (CRPC), yet existing drugs lose their efficacy during continued treatment. This evolution of resistance is due to heterogenous mechanisms which include AR mutations causing the identical drug to activate instead of inhibit the receptor. Understanding in molecular detail the paradoxical phenomenon wherein an AR antagonist is transformed into an agonist by structural mutations in the target receptor is thus of paramount importance. Herein, we describe a reciprocal paradox: opposing antagonist and agonist AR regulation determined uniquely by enantiomeric forms of the same drug structure. The antiandrogen BMS-641988, which has (R)-chirality at C-5 encompasses a previously uncharacterized (S)-stereoisomer that is, surprisingly, a potent agonist of AR, as demonstrated by transcriptional assays supported by cell imaging studies. This duality was reproduced in a series of novel compounds derived from the BMS-641988 scaffold. Coupled with in silico modeling studies, the results inform an AR model that explains the switch from potent antagonist to high-affinity agonist in terms of C-5 substituent steric interactions with helix 12 of the ligand binding site. They imply strategies to overcome AR drug resistance and demonstrate that insufficient enantiopurity in this class of AR antagonist can confound efforts to correlate structure with function.


Assuntos
Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/química , Androgênios/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...